Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(7): e0255154, 2021.
Article in English | MEDLINE | ID: covidwho-1331999

ABSTRACT

BACKGROUND: COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. METHODS: This systematic review was registered at PROSPERO under CRD42020177154. We systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31st 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. RESULTS: Of 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10 mg/L, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49 U/L, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88 pg/mL, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 to 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). DISCUSSION: This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors that predict severe COVID-19 outcomes and will inform clinical scores to support early decision-making.


Subject(s)
COVID-19/pathology , C-Reactive Protein/metabolism , COVID-19/metabolism , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/virology , Fibrin Fibrinogen Degradation Products/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Troponin I/metabolism
2.
J Cereb Blood Flow Metab ; 41(6): 1179-1192, 2021 06.
Article in English | MEDLINE | ID: covidwho-1061015

ABSTRACT

Cerebrovascular events have emerged as a central feature of the clinical syndrome associated with Sars-CoV-2 infection. This increase in infection-related strokes is marked by atypical presentations including stroke in younger patients and a high rate of hemorrhagic transformation after ischemia. A variety of pathogenic mechanisms may underlie this connection. Efforts to identify synergism in the pathophysiology underlying stroke and Sars-CoV-2 infection can inform the understanding of both conditions in novel ways. In this review, the molecular cascades connected to Sars-CoV-2 infection are placed in the context of the cerebral vasculature and in relationship to pathways known to be associated with stroke. Cytokine-mediated promotion of systemic hypercoagulability is suggested while direct Sars-CoV-2 infection of cerebral endothelial cells may also contribute. Endotheliopathy resulting from direct Sars-CoV-2 infection of the cerebral vasculature can modulate ACE2/AT1R/MasR signaling pathways, trigger direct viral activation of the complement cascade, and activate feed-forward cytokine cascades that impact the blood-brain barrier. All of these pathways are already implicated as independent mechanisms driving stroke and cerebrovascular injury irrespective of Sars-CoV-2. Recognizing the overlap of molecular pathways triggered by Sars-CoV-2 infection with those implicated in the pathogenesis of stroke provides an opportunity to identify future therapeutics targeting both Sars-CoV-2 and stroke thereby reducing the impact of the global pandemic.


Subject(s)
COVID-19/pathology , Cerebrovascular Disorders/etiology , Stroke/etiology , Angiotensin-Converting Enzyme 2/metabolism , Blood-Brain Barrier/metabolism , COVID-19/complications , COVID-19/virology , Cerebrovascular Disorders/metabolism , Complement Activation , Humans , Proto-Oncogene Mas , Renin-Angiotensin System , Spike Glycoprotein, Coronavirus/metabolism , Stroke/metabolism , Virus Internalization
3.
Neurotox Res ; 39(2): 359-368, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-783069

ABSTRACT

Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-ß) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-ß, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Cerebrovascular Disorders/metabolism , Encephalitis/metabolism , Animals , Brain/blood supply , Brain Injuries, Traumatic/complications , Cerebrovascular Disorders/etiology , Encephalitis/etiology , Male , Mice , Neurons/metabolism
4.
Int J Mol Sci ; 21(12)2020 Jun 17.
Article in English | MEDLINE | ID: covidwho-738129

ABSTRACT

Exposure to ambient air pollution is a well-established determinant of health and disease. The Lancet Commission on pollution and health concludes that air pollution is the leading environmental cause of global disease and premature death. Indeed, there is a growing body of evidence that links air pollution not only to adverse cardiorespiratory effects but also to increased risk of cerebrovascular and neuropsychiatric disorders. Despite being a relatively new area of investigation, overall, there is mounting recent evidence showing that exposure to multiple air pollutants, in particular to fine particles, may affect the central nervous system (CNS) and brain health, thereby contributing to increased risk of stroke, dementia, Parkinson's disease, cognitive dysfunction, neurodevelopmental disorders, depression and other related conditions. The underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests inflammation and oxidative stress to be crucial factors in the pathogenesis of air pollution-induced disorders, driven by the enhanced production of proinflammatory mediators and reactive oxygen species in response to exposure to various air pollutants. From a public health perspective, mitigation measures are urgent to reduce the burden of disease and premature mortality from ambient air pollution.


Subject(s)
Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/metabolism , Mental Disorders/etiology , Mental Disorders/metabolism , Oxidative Stress , Animals , COVID-19/complications , COVID-19/epidemiology , Cerebrovascular Disorders/epidemiology , Disease Models, Animal , Disease Susceptibility , Global Health , Humans , Inflammation , Mental Disorders/epidemiology , Particulate Matter/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL